
The interval between subsequent posting times may have different impact on the transmission and cross-propagation of the old and new information to result in different peak value and final size of forwarding users of the new information, depending on the content correlation and whether the new information is posted during the outbreak or quasi steady-state phase of the old information. In a fast-evolving major public health crisis such as the COVID-19 pandemic, multiple pieces of relevant information can be posted sequentially on a social media platform. Data fitting using the real data of both reading quantity and forwarding quantity obtained from Chinese Sina-microblog can parameterize the model to make an accurate prediction of the COVID-19 public opinion trend until the next major news item occurs, and the sensitivity analysis provides the basic strategies for communication. We develop the SRFI model, based on the public reading quantity and forwarding quantity that denote contact and participation respectively, and take into account the behavior that users may re-enter another related topic during the attention phase or the participation phase freely.


To help in designing effective communication strategies during a major public health emergency, we analyze the real data of COVID-19 information and propose a comprehensive susceptible-reading-forwarding-immune (SRFI) model to understand the patterns of key information propagation considering both public contact and participation. The outbreak of a novel coronavirus (COVID-19) aroused great public opinion in the Chinese Sina-microblog.
